
ISSN 23499842(Online), Volume 1, Special Issue 1(NCFCSIT 15), March 2015  

                  International Journal of Innovative Trends and Emerging Technologies 

Paper ID #NC15024                                                                                                                                                                         123 
 

 

 HADOOP’S MAP REDUCE FRAME WORKS 

ADVANTAGES AND CHALLENGES IN DATA 

ANALYTICS FOR BIG DATA 

Author:R.R. KARTHIKEYAN, Research-Scholar, 

Bharath University, Chennai-600126 

rrkarthikeyan0711@gmail.com 
Co-Author & Supervisor: DR.B.RAGHU, Professor & Dean 

Department of Computer Science & Engineering 

Sri.Ramanujar Engineering College, Chennai – 600127 

raghubalraj@gmail.com 

Abstract: “Big Data" due to its sheer Volume, Variety, 

Velocity and Veracity. Most of this data is 

Unstructured, quasi structured or semi structured and 

it is heterogeneous in nature.  The volume and the 

heterogeneity of data with the speed it is generated, 

makes it difficult for the present computing 

infrastructure to manage Big Data.  

Traditional data management, warehousing and 

analysis systems fall short of tools to analyze this data.  

Analyzing Big Data is a challenging task as it 

involves large distributed file systems which should be 

fault tolerant, flexible and scalable. Map Reduce is 

widely been used for the efficient analysis of Big Data. 

Traditional DBMS techniques like Joins and Indexing 

and other techniques like graph search is used for 

classification and clustering of Big Data.  

In this research paper various methods for catering 

to the problems in hand through Map Reduce 

framework over Hadoop Distributed File System 

(HDFS). 

These techniques are being adopted to be used in 

Map Reduce. Map Reduce is a Minimization technique 

which makes use of file indexing with mapping, sorting, 

shuffling and finally reducing. Map Reduce techniques 

have been studied at in this paper which is 

implemented for Big Data analysis using HDFS. 

1. Introduction:  

Big data analytics is the process of examining large 

data sets containing a variety of data types to uncover 

hidden patterns, unknown correlations, market trends,  

customer preferences and other useful business 

information. The analytical findings can lead to more 

effective marketing, new revenue opportunities, better 

customer service, improved operational efficiency, 

competitive advantages over rival organizations and other 

business benefits. 

The primary goal of big data analytics is to help 

companies make more informed business decisions by 

enabling data scientists, predictive modelers and other 

analytics professionals to analyze large volumes of 

transaction data, as well as other forms of data that may be 

untapped by conventional business intelligence (BI) 

programs. That could include Web server logs and Internet 

click stream data, social media content and social network 

activity reports, text from customer emails and survey 

responses, mobile-phone call detail records and machine 

data captured by sensors connected to the Internet of 

Things. Some people exclusively associate big data with 

semi-structured and unstructured data of that sort, but 

consulting firms like Gartner Inc. and Forrester Research 

Inc. also consider transactions and other structured data to 

be valid components of big data analytics applications. 

Analytics helps to discover what has changed and the 

possible solutions. Second, advanced analytics is the best 

way to discover more business opportunities, new 

customer segments, identify the best suppliers, associate 

products of affinity, understand sales seasonality etc. 

Traditional experience in data warehousing, reporting, 

and online analytic processing (OLAP) is different for 

advanced forms of analytics. Organizations are 

implementing specific forms of analytics, particularly 

called advanced analytics. These are an collection of 

related techniques and tool types, usually including 

predictive analytics, data mining, statistical analysis, 

complex SQL, data visualization, artificial intelligence, 

natural language processing. Database analytics platforms 

such as MapReduce, in-database analytics, in-memory 

databases, and columnar data stores are used for 

standardizing them. 

 

2. HADOOP AND HDFS (New File system for 

Hadoop): 

Hadoop is a scalable, open source, fault-tolerant Virtual 

Grid operating system architecture for data storage and 

processing. It runs on commodity hardware, it uses HDFS 

which is fault-tolerant high-bandwidth clustered storage 

architecture. It runs MapReduce for distributed data 

mailto:rrkarthikeyan0711@gmail.com
mailto:raghubalraj@gmail.com
http://searchbusinessanalytics.techtarget.com/definition/Data-scientist
http://searchdatamanagement.techtarget.com/definition/business-intelligence
http://searchsoa.techtarget.com/definition/click-stream
http://whatis.techtarget.com/definition/Internet-of-Things
http://whatis.techtarget.com/definition/Internet-of-Things
http://whatis.techtarget.com/definition/Internet-of-Things
http://searchbusinessanalytics.techtarget.com/definition/unstructured-data


ISSN 23499842(Online), Volume 1, Special Issue 1(NCFCSIT 15), March 2015  

                  International Journal of Innovative Trends and Emerging Technologies 

Paper ID #NC15024                                                                                                                                                                         124 
 

processing and is works with structured and unstructured 

data.  

Figure1, Illustrates the layers found in the software 

architecture of a Hadoop stack. At the bottom of the 

Hadoop software stack is HDFS, a distributed file system 

in which each file appears as a (very large) contiguous and 

randomly addressable sequence of bytes.  

 

Figure1: Hadoop Architecture Layer 

For batch analytics, the middle layer of the stack is the 

Hadoop Map Reduce system, which applies map 

operations to the data in partitions of an HDFS file, sorts 

and redistributes the results based on key values in the 

output data, and then performs reduce operations on the 

groups of output data items with matching keys from the 

map phase of the job. For applications just needing basic 

key-based record management operations, the HBase store 

(layered on top of HDFS) is available as a key-value layer 

in the Hadoop stack. As indicated in the figure2, the 

contents of HBase can either be directly accessed and 

manipulated by a client application or accessed via Hadoop 

for analytical needs.  

 

Many users of the Hadoop stack prefer the use of a 

declarative language over the bare MapReduce 

programming model. High-level language compilers (Pig 

and Hive) are thus the topmost layer in the Hadoop 

software stack for such clients. 

Figure2: Hadoop Architecture Tools and usage 

- 

3. MAP REDUCE Framework: 

Map Reduce is a programming model for processing 

Large -scale datasets in computer clusters. The Map 

Reduce Programming model consists of two functions, 

map () and reduce (). Users can implement their own 

processing logic by Specifying a customized map () and 

reduce () function.  

The map () function takes an input key/value pair and 

produces a list of intermediate key/value pairs. The Map 

Reduce runtime system groups together all intermediate 

pairs based on the intermediate keys and passes them to 

reduce () function for producing the final results.  

 

 

Map Reduce Components shown in Figure3: 

1. Name Node: 

Manages HDFS metadata, doesn’t deal with files 

directly  

2. Data Node: 

Stores blocks of HDFS –default replication level for 

each block: 3  

3. Job Tracker –schedules, allocates and monitors job 

execution on slaves –Task Trackers 

4. Task Tracker –runs Map Reduce operations  

 

 
Figure3: Map Reduce Components 

 

. 

 

How Map Reduce works: 

3.1) Mapper 

Mapper maps input key/value pairs to a set of 

intermediate key/value pairs. Maps are the individual tasks 

that transform input records into intermediate records. The 

transformed intermediate records do not need to be of the 

same type as the input records. A give in input pair may 

map to zero or many output pairs  

 

The number of maps is usually driven by the total size 

of the inputs, that is, the total Number of blocks of the 



ISSN 23499842(Online), Volume 1, Special Issue 1(NCFCSIT 15), March 2015  

                  International Journal of Innovative Trends and Emerging Technologies 

Paper ID #NC15024                                                                                                                                                                         125 
 

input files. The right level of parallelism for maps seems to 

be around 10-100 maps per-node  

Master slave principal shown in Figure4. 

. 

3.2) Reducer  

Reducer reduces a set of intermediate values which 

share a key to a smaller set of values. Reducer has 3 

primary phases: shuffle, sort and reduce.  

 

3.2.1) Shuffle Input to the Reducer is the sorted output 

of the mappers. In this phase the framework fetches the 

relevant partition of the output of all the mappers, via HTT 

 

3.2.2) Sort  

The framework groups Reducer inputs by keys (since 

different mappers may have output the same key) in this 

stage. The shuffle and sort phases occur simultaneously 

while map-outputs are being fetched they are merged. 

3.2.3) Secondary Sort 

If equivalence rules for grouping the intermediate keys 

are required to be different from those for grouping keys 

before reduction, then one may specify a Comparator 

(Secondary Sort).  

3.2.4) Reduce 

In this phase the reduce method is called for each <key, 

(list of values)>pair in the grouped inputs. The output of 

the reduce task is typically written to the File System via 

Output Collector. Applications can use the Reporter to 

report progress, set application-level status messages and 

update Counters, or just indicate that they are alive. The 

output of the Reducer is not sorted. The right number of 

reduces seems to be 0.95 or 1.75 multiplied by no. of 

nodes. With 0.95 all of the reduces can launch immediately 

and start transferring map outputs as the maps finish. With 

1.75 the faster nodes will finish their first round of reduces 

and launch a second wave of reduces doing a much better 

job of load balancing. 

Increasing the number of reduces increases the 

framework overhead, but increases load balancing and 

lowers the cost of failures. The scaling factors above are 

slightly less than whole numbers to reserve a few reduces 

lots in the framework for speculative -tasks and failed 

tasks. It is legal to set the number of reduce-tasks to zero if 

no reduction is desired 

 

a) Partitioner: 

Partitioner partitions the key space. Partitioner controls 

the partitioning of the keys of the intermediate map-

outputs. The key (or a subset of the key) is used to derive 

the partition, typically by a hash function. The total 

number of partitions is the same as the number of reduce 

tasks for the job. Hence this controls which of the m 

reduce tasks the intermediate key (and hence the record) is 

sent to for reduction.  

Hash Partitioner is the default Partitioner.  

b) Reporter  

Reporter is a facility for Map Reduce applications to 

report progress, set application-level status messages and 

update Counters. Mapper and Reducer implementations 

can use the Reporter to report progress or just indicate that 

they are alive. In scenarios where the application takes a 

significant amount of time to process individual key/value 

pairs, this is crucial since the framework might assume that 

the task has timed-out and kill that task. Applications can 

also update Counters using the Reporter.  

c) Output Collector  

Output Collector is a generalization of the facility 

provided by the MapReduce framework to collect data 

output by the Mapper or the Reducer (either the 

intermediate outputs or the output of the job). 

HadoopMapReduce comes bundled with a library of 

generally useful mappers, reducers, and partitioners 

 

 
Figure4: Map Reduce Working through Master / 

Slave 

 

4. CONCLUSION  

The need to process enormous quantities of data has 

never been greater. Not only are terabyte- and petabyte-

scale datasets rapidly becoming commonplace, but there is 

consensus that great value lies buried in them, waiting to 

be unlocked by the right computational tools. In the 

commercial sphere, business intelligence, driven by the 

ability to gather data from a dizzying array of sources. Big 

Data analysis tools like Map Reduce over Hadoop and 

HDFS, promises to help organizations better understand 

their customers and the marketplace, hopefully leading to 

better business decisions and competitive advantages.  For 

engineers building information processing tools and 

applications, large and heterogeneous datasets which are 

generating continuous flow of data, lead to more effective 

algorithms for a wide range of tasks, from machine 

translation to spam detection. In the natural and physical 

sciences, the ability to analyse massive amounts of data 

may provide the key to unlocking the secrets of the cosmos 

or the mysteries of life. MapReduce can be exploited to 

solve a variety of problems related to text processing at 

scales that would have been unthinkable a few years ago. 

There are many examples of algorithms that depend 

crucially on the existence of shared global state during 

processing, making them difficult to implement in 

MapReduce (since the single opportunity for global 

synchronization in MapReduce is the barrier between the 

map and reduce phases of processing). Implementing 

online learning algorithms in MapReduce is problematic. 

The model parameters in a learning algorithm can be 

viewed as shared global state, which must be updated as 



ISSN 23499842(Online), Volume 1, Special Issue 1(NCFCSIT 15), March 2015  

                  International Journal of Innovative Trends and Emerging Technologies 

Paper ID #NC15024                                                                                                                                                                         126 
 

the model is evaluated against training data. All processes 

performing the evaluation (presumably the mappers) must 

have access to this state. In a batch learner, where updates 

occur in one or more reducers (or, alternatively, in the 

driver code), synchronization of this resource is enforced 

by the MapReduce framework. However, with online 

learning, these updates must occur after processing smaller 

numbers of instances. This means that the framework must 

be altered to support faster processing of smaller datasets, 

which goes against the design choices of most existing 

MapReduce implementations. Since MapReduce was 

specifically optimized for batch operations over large 

amounts of data, such a style of computation would likely 

result in insufficient use of resources. In Hadoop, for 

example, map and reduce tasks have considerable start-up 

costs. 

 

 

 

 

 

REFERENCES  

 
[1], Puneet Singh Duggal,Sanchita Paul, International Conference on 

Cloud, Big Data and Trust 2013,  Department of Computer Science & 
Engineering Birla Institute of Technology, Mesra, Ranchi, India. 

 

[2] Jefry Dean and Sanjay Ghemwat, MapReduce:A Flexible Data 

Processing Tool, Communications of the ACM, Volume 53, 

Issuse.1,January 2010, pp 72-77.  

[3] Jefry Dean and Sanjay Ghemwat,.MapReduce: Simplified data 

processing on large clusters, Communications of the ACM, Volume 51 

pp. 107–113, 2008  

[4] Brad Brown, Michael Chui, and James Manyika, Are you ready 

for the era of „big data‟?,McKinseyQuaterly,Mckinsey Global Institute, 
October 2011.  

[6] DunrenChe, MejdlSafran, and ZhiyongPeng, From Big Data to 
Big Data Mining: Challenges, Issues, and Opportunities, DASFAA 

Workshops 2013, LNCS 7827, pp. 1–15, 2013.  

[7] MarcinJedyk, MAKING BIG DATA, SMALL, Using distributed 

systems for processing, analysing and managing large huge data sets, 

Software Professional‟s Network, Cheshire Data systems Ltd.  

[8] OnurSavas, YalinSagduyu, Julia Deng, and Jason Li,Tactical Big 

Data Analytics: Challenges, Use Cases and Solutions, Big Data Analytics 

Workshop in conjunction with ACM Sigmetrics 2013,June 21, 2013.  

[9] Kyuseok Shim, MapReduce Algorithms for Big Data Analysis, 
DNIS 2013, LNCS 7813, pp. 44–48, 2013.  

 

[10]Raja.Appuswamy,ChristosGkantsidis,DushyanthNarayanan,Orio

nHodson,AntonyRowstron, Nobody ever got fired for buying a cluster, 
Microsoft Research, Cambridge, UK, Technical Report,MSR-TR-2013-2  

 

[11] Carlos Ordonez, Algorithms and Optimizations for Big Data 
Analytics: Cubes, Tech Talks,University of Houston, USA.  

 


